ASSIGNMENT 1

Textbook assignment: "Introduction to Generators and Motors," pages 1-1 through 4-18.

- 1-1. In generators, what principle is used to convert mechanical motion to electrical energy?
 - 1. Atomic reaction
 - 2. Electrical attraction
 - 3. Magnetic repulsion
 - 4. Magnetic induction
- 1-2. When you use the left-hand rule for generators, what is indicated by the middle finger?
 - 1. Direction of flux
 - 2. Direction of motion
 - 3. Direction of current flow
 - 4. Direction of the magnetic field
- 1-3. The output voltage of an elementary generator is coupled from the armature to the brushes by what devices?
 - 1. Slip rings
 - 2. Interpoles
 - 3. Terminals
 - 4. Pigtails
- 1-4. An elementary generator consists of a single coil rotating in a magnetic field. Why is NO voltage induced in the coil as it passes through the neutral plane?
 - 1. Flux lines are too dense
 - 2. Flux lines are not being cut
 - 3. Flux lines are not present
 - 4. Flux lines are being cut in the wrong direction

- 1-5. What components cause(s) a generator to produce a dc voltage instead of an ac voltage at its output?
 - 1. The brushes
 - 2. The armature
 - 3. The slip rings
 - 4. The commutator
- 1-6. When two adjacent segments of the commutator on a single-loop dc generator come in contact with the brush at the same time, which of the following conditions will occur?
 - 1. The output voltage will be zero
 - 2. The output voltage will be maximum negative
 - 3. The output voltage will be maximum positive
- 1-7. In an elementary, single-coil, dc generator with one pair of poles, what is the maximum number of pulsations produced in one revolution?
 - 1. One
 - 2. Two
 - 3. Three
 - 4. Four
- 1-8. If an elementary dc generator has a twocoil armature and four field poles, what is the total number of segments required in the commutator?
 - 1. 8
 - 2. 2
 - 3. 16
 - 4. 4

- 1-9. How can you vary the strength of the magnetic field in a dc generator?
 - 1. By varying the armature current
 - 2. By varying the speed of armature rotation
 - 3. By varying the voltage applied to the electromagnetic field coils
 - 4. By varying the polarity of the field poles
- 1-10. Under which of the following conditions does sparking occur between the brushes and the commutator?
 - 1. When operating under normal conditions
 - 2. When there is improper commutation
 - 3. When there is an excessive load current
 - 4. When commutation is in the neutral plane
- 1-11. Distortion of the main field by interaction with the armature field defines what term?
 - 1. Commutation
 - 2. Mutual reaction
 - 3. Armature reaction
 - 4. Mutual induction
- 1-12. Distortion of the main field by interaction with the armature field can be compensated for by the use of
 - 1. slip rings
 - 2. interpoles
 - 3. a commutator
 - 4. special brushes

- 1-13. Motor reaction in a dc generator is a physical force caused by the magnetic interaction between the armature and the field. What effect, if any, does this force have on the operation of the generator?
 - 1. It tends to oppose the rotation of the armature
 - 2. It tends to aid the rotation of the armature
 - 3. It causes the generator to vibrate
 - 4. None
- 1-14. In dc generators, copper losses are caused by which of the following factors?
 - 1. Reluctance in the field poles
 - 2. Resistance in the armature winding
 - 3. Reactance in the armature and field windings
 - 4. All of the above
- 1-15. Eddy currents in armature cores are kept low by which of the following actions?
 - 1. Using powdered iron as a core material
 - 2. Limiting armature current
 - 3. Insulating the core
 - 4. Laminating the iron in the core
- 1-16. What makes the drum-type armature more efficient than the Gramme-ring armature?
 - 1. The drum-type armature has more windings than the Gramme-ring armature
 - 2. The drum-type armature can be rotated faster than the Gramme-ring armature
 - 3. The drum-type armature coils are fully exposed to the magnetic field, while the Gramme-ring armature coils are only partially exposed to the magnetic field
 - 4. The drum-type armature has a laminated core, while the Grammering armature has a solid core

- 1-17. What type of dc generator application best utilizes the features of the lapwound armature?
 - 1. High-voltage
 - 2. High-current
 - 3. High-speed
 - 4. Variable-speed
- 1-18. Which of the following is NOT a major classification of dc generators?
 - 1. Compound-wound
 - 2. Series-wound
 - 3. Shunt-wound
 - 4. Lap-wound
- 1-19. What characteristic of series-wound generators makes them unsuitable for most applications?
 - 1. They require external field excitation
 - 2. The output voltage varies as the speed varies
 - 3. They are not capable of supplying heavy loads
 - 4. The output voltage varies as the load current varies
- 1-20. As the load current of a dc generator varies from no-load to full-load, the variation in output voltage is expressed as a percent of the full-load voltage.

 What term applies to this expression?
 - 1. Gain
 - 2. Voltage control
 - 3. Voltage regulation
 - 4. Load limit
- 1-21. When two or more generators are used to supply a common load, what term is applied to this method of operation?
 - 1. Series
 - 2. Compound
 - 3. Split-load
 - 4. Parallel

- 1-22. What special-purpose dc generator is used as a high-gain power amplifier?
 - 1. Lap-wound
 - 2. Shunt-wound
 - 3. Amplidyne
 - 4. Compound-connected
- 1-23. The gain of an amplifying device can be determined by which of the following formulas?
 - 1. GAIN = INPUT + OUTPUT
 - 2. $GAIN = INPUT \times OUTPUT$
 - 3. GAIN = OUTPUT INPUT
 - 4. GAIN = OUTPUT + INPUT
- 1-24. The maximum gain possible from an amplidyne is approximately
 - 1. 100
 - 2. 5,000
 - 3. 10,000
 - 4. 50,000
- 1-25. What determines the direction of rotation of a dc motor?
 - 1. The type of armature
 - 2. The method of excitation
 - 3. The number of armature coils
 - 4. The polarity of armature current and direction of magnetic flux
- 1-26. When you use the right-hand rule for motors, what quantity is indicated by the extended forefinger?
 - 1. Direction of flux north to south
 - 2. Direction of flux south to north
 - 3. Direction of current
 - 4. Direction of motion

- 1-27. Which, if any, of the following situations is a major electrical difference between a dc motor and a dc generator?
 - 1. The armatures are different
 - 2. The shunt connections are different
 - 3. The dc generator requires a commutator, the dc motor does not
 - 4. None of the above
- 1-28. In a dc motor, what causes counter emf?
 - 1. Improper commutation
 - 2. Armature reaction
 - 3. Generator action
 - 4. Excessive speed
- 1-29. In a dc motor, how, if at all, does counter emf affect speed?
 - 1. It causes the speed to increase
 - 2. It causes the speed to decrease
 - 3. It causes rapid fluctuations of the speed
 - 4. It does not affect speed
- 1-30. What is the load on a dc motor?
 - 1. The field current
 - 2. The armature current
 - 3. The mechanical device the motor moves
 - 4. The total current drawn from the source
- 1-31. When a series dc motor is operated without a load, which of the following conditions occurs?
 - 1. The armature draws excessive current
 - 2. The voltage requirement increases
 - 3. The armature will not turn
 - 4. The armature speeds out of control

- 1-32. A dc series motor is best suited for which of the following applications?
 - 1. Steady load, low torque
 - 2. Variable load, low torque
 - 3. Steady load, high torque
 - 4. Variable load, high torque
- 1-33. What is the main advantage of a shunt motor over a series motor?
 - A shunt motor develops higher torque at lower speeds than a series motor
 - 2. A shunt motor can be operated at higher speeds than a series motor
 - 3. A shunt motor draws less current from the source than a series motor
 - 4. A shunt motor maintains a more constant speed under varying load conditions than a series motor
- 1-34. How can the direction of rotation be changed in a dc motor?
 - 1. Only by reversing the field connections
 - 2. Only by reversing the armature connections
 - 3. By reversing both the armature connections and the field connections
 - 4. 4.By reversing either the armature connections or the field connections
- 1-35. When the voltage applied to the armature of a dc shunt motor is decreased, what happens to the motor speed?
 - 1. It becomes uncontrollable
 - 2. It decreases
 - 3. It increases
 - 4. The motor stops
- 1-36. In a dc motor, the neutral plane shifts in what direction as the result of armature reaction?
 - 1. Clockwise
 - 2. Counterclockwise
 - 3. In the direction of rotation
 - 4. Opposite the direction of rotation

- 1-37. The current in the interpoles of a dc motor is the same as the
 - 1. armature current
 - 2. field current
 - 3. total load current
 - 4. eddy current
- 1-38. In a dc motor, what is the purpose of the resistor placed in series with the armature?
 - 1. To counteract armature reaction
 - 2. To limit armature current
 - 3. To increase field strength
 - 4. To prevent overspeeding
- 1-39. Magnetic induction in an alternator is a result of relative motion between what two elements?
 - 1. The rotor and the armature
 - 2. The armature and the field
 - 3. The field and the stator
 - 4. The rotor and the field
- 1-40. Voltage is induced in what part of an alternator?
 - 1. The commutator
 - 2. The brushes
 - 3. The armature
 - 4. The field
- 1-41. What are the two basic types of alternators?
 - 1. Multiphase and polyphase
 - 2. Alternating current and direct current
 - 3. Rotating field and rotating armature
 - 4. Series-wound and shunt-wound
- 1-42. Which of the following alternator types is most widely used?
 - 1. Shunt-wound
 - 2. Rotating-armature
 - 3. Series-wound
 - 4. Rotating-field

- 1-43. The purpose of the exciter in an alternator is to
 - 1. provide dc field excitation
 - 2. compensate for armature losses
 - 3. compensate for counter emf
 - 4. counteract armature reaction
- 1-44. An alternator using a gas turbine as a prime mover should have what type of rotor?
 - 1. Turbine-driven
 - 2. Salient-pole
 - 3. Armature
 - 4. Geared
- 1-45. In alternators with low-speed prime movers, only what type of rotor may be used?
 - 1. Geared
 - 2. Armature
 - 3. Salient-pole
 - 4. Turbine-driven
- 1-46. Alternators are rated using which of the following terms?
 - 1. Volts
 - 2. Watts
 - 3. Amperes
 - 4. Volt-amperes
- 1-47. What does the term single-phase mean relative to single-phase alternators?
 - 1. All output voltages are in phase with each other
 - 2. The voltage and current are in phase
 - 3. The phase angle is constant
 - 4. Only one voltage is produced
- 1-48. In a single-phase alternator with multiple armature windings, how must the windings be connected?
 - 1. Series
 - 2. Parallel
 - 3. Wye
 - 4. Delta

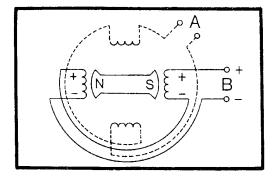


Figure 1A.—Two-phase alternator.

IN ANSWERING QUESTION 1-49, REFER TO FIGURE 1A.

- 1-49. What is the phase relationship between voltages A and B?
 - 1. In phase
 - 2. 45° out of phase
 - 3. 90° out of phase
 - 4. 180° out of phase
- 1-50. A two-phase, three-wire alternator has what maximum number of output voltages available?
 - 1. One
 - 2. Two
 - 3. Three
 - 4. Four

THIS SPACE LEFT BLANK INTENTIONALLY.

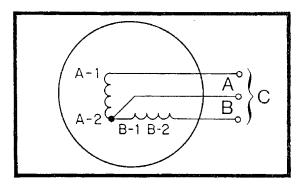


Figure 1B.—Connections for two-phase, three-wire alternator output.

IN ANSWERING QUESTION 1-51, REFER TO FIGURE 1B.

- 1-51. What is the relative amplitude of the voltage at output C as compared to A and B?
 - 1. C is .707 times A or B
 - 2. C is equal to the difference between and B
 - 3. C is 1.414 times A or B
 - 4. C is twice the sum of A and B
- 1-52. What determines the phase relationship between the individual output voltages in a multiphase alternator?
 - 1. The speed of rotation
 - 2. The number of field poles
 - 3. The method of connecting the terminals
 - 4. The placement of the armature coils
- 1-53. What is the phase relationship between the output voltages of a three-phase alternator?
 - 1. In phase
 - 2. 60° out of phase
 - 3. 90° out of phase
 - 4. 120° out of phase

- 1-54. The ac power aboard ship is usually distributed as what voltage?
 - 1. 115-volt, three-phase
 - 2. 115-volt, single-phase
 - 3. 230-volt, single-phase
 - 4. 450-volt, three-phase
- 1-55. The output frequency of an alternator is determined by what two factors?
 - 1. The number of poles and the number of phases
 - 2. The number of poles and the speed of rotation
 - 3. The speed of rotation and the voltampere rating
 - 4. The number of phases and the voltampere rating
- 1-56. A four-pole, single-phase alternator rotating at 18M rpm will produce what output frequency?
 - 1. 60 Hz
 - 2. 400 Hz
 - 3. 1800 Hz
 - 4. 3600 Hz
- 1-57. Which of the following is the correct formula for determining the percent of regulation of an alternator?

$$\frac{1. \quad E_{NL} - E_{FL}}{E_{FL}} \times 100 = \%$$

$$\frac{\mathbf{E}_{NL} \times \mathbf{E}_{FL}}{100} = \%$$

3.
$$\mathbf{E}_{NL} - \mathbf{E}_{FL} \times 100 = \%$$

4.
$$\frac{\mathbf{E}_{NL}}{100} \times \mathbf{E}_{FL} = \%$$

- 1-58. In most alternators, the output voltage is controlled by adjusting the
 - 1. rotor speed
 - 2. field voltage
 - 3. armature resistance
 - 4. electric load
- 1-59. When alternators are to be operated in parallel, which of the following alternator characteristics must be considered?
 - 1. Voltage
 - 2. Frequency
 - 3. Phase relationship
 - 4. All the above
- 1-60. Which of the following motors is/are types of ac motor?
 - 1. Series
 - 2. Synchronous
 - 3. Induction
 - 4. All of the above
- 1-61. Which of the following types of motors is widely used to power small appliances?
 - 1. Universal
 - 2. Synchronous
 - 3. Polyphase
 - 4. Compound
- 1-62. A universal motor is a special type of
 - 1. synchronous motor
 - 2. series motor
 - 3. parallel motor
 - 4. polyphase motor
- 1-63. The number of pole pairs required to establish a rotating magnetic field in a multiphase motor stator is determined by which of the following factors?
 - 1. The magnitude of the voltage
 - 2. The magnitude of the current
 - 3. The number of phases
 - 4. The size of the motor

- 1-64. In a two-phase motor stator, what is the angular displacement between the field poles?
 - 1. 0°
 - 2. 90°
 - 3. 180°
 - 4. 360°
- 1-65. Adjacent phase windings of a 3-phase motor stator are what total number of degrees apart?
 - 1. 30°
 - 2. 90°
 - 3. 120°
 - 4. 180°
- 1-66. Which of the following types of motors has a constant speed from no load to full load?
 - 1. Series
 - 2. Synchronous
 - 3. Induction
 - 4. Universal
- 1-67. What type of ac motor is the simplest and least expensive to manufacture?
 - 1. Induction
 - 2. Series
 - 3. Synchronous
 - 4. Two-phase
- 1-68. What term applies to the difference between the speed of the rotating stator field and the rotor speed?
 - 1. Slip
 - 2. Synchronous
 - 3. Rotor error
 - 4. Torque

- 1-69. The speed of the rotor of an induction motor depends upon which of the following factors?
 - 1. The method of connecting the load
 - 2. The dc voltage applied to the rotor
 - 3. The torque requirements of the load
 - 4. The current in the rotor
- 1-70. What type of ac motor is most widely used?
 - 1. Series
 - 2. Universal
 - 3. Synchronous
 - 4. Single-phase induction
- 1-71. What type of ac motor uses a combination of inductance and capacitance to apply out-of-phase currents to the start windings?
 - 1. Three-phase
 - 2. Series
 - 3. Synchronous
 - 4. Split-phase induction
- 1-72. Why are shaded-pole motors built only in small sizes?
 - 1. They have weak starting torque
 - 2. They are expensive in large sizes
 - 3. They are unidirectional
 - 4. They require large starting current